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Abstract

This paper is concerned with diagnosability analy-
sis, which proves a requisite for several tasks during
the system’s life cycle. The Model-Based Diagno-
sis (MBD) community has developed specific ap-
proaches for Continuous Systems (CS) and for Dis-
crete Event Systems (DES) in two distinct and par-
allel tracks. In this paper, the correspondences be-
tween the concepts used in CS and DES approaches
are clarified and it is shown that the diagnosability
problem can be brought back to the same formula-
tion using the concept of signatures. These results
bridges CS and DES diagnosability and open per-
spectives for hybrid model based diagnosis.

1 Introduction
Diagnosis is an increasingly active research domain, which
can be approached from different perspectives according to
the type of system at hand and the required abstraction
level. Although some recent works have considered diag-
nosis based on hybrid models[Williams and Nayak, 1996;
Bénazéraet al., 2002; Bénazéra and Travé-Massuyès, 2003;
Guptaet al., 2004], the Model-Based Diagnosis (MBD) com-
munity has developed specific approaches for Continuous
Systems (CS) and for Discrete Event Systems (DES) in two
distinct and parallel tracks. Algorithms for monitoring, diag-
nosis and diagnosability analysis have been proposed[Sam-
pathet al., 1995; Jianget al., 2001; Yoo and Lafortune, 2002;
Cimatti et al., 2003; Rozé and Cordier, 2002; Jeronet al.,
2006; Pattonet al., 1989; Staroswiecki and Comtet-Varga,
1999; Frisket al., 2003; Struss and Dressler, 2003]. The for-
malisms and tools are quite different : the CS community
makes use of algebro-differential equation models or quali-
tative abstractions whereas the DES community uses finite-
state formalisms. For diagnosability analysis, the CS ap-
proaches generally adopt astate-based diagnosis point of
view in the sense that diagnosis is performed on a snapshot of
observables, i.e. one observation at a given time point. The
DES approaches performevent-based diagnosis and achieves
state tracking, which means dynamic diagnosis reasoning
achieved across time.

This paper is concerned with diagnosability analysis,
which proves a requisite for several tasks during the system’s

life cycle, in particular instrumentation design, end-of-line
testing, testing for diagnosis, etc. In spite of quite different
frameworks, it is shown that the diagnosability assessment
problem stated on both sides can be brought back to the same
formulation and that common concepts can be proposed for
proving diagnosability definitions equivalent. This result pro-
vides solid ground for considering the analysis of hybrid sys-
tems diagnosability.

2 DES and CS modelling approaches
This section presents the different theories used to model
DESs and CSs. The principles underlying DES and CS model
based diagnosis are given and diagnosability is introducedon
both sides. Both approaches rely on the analysis of the ob-
servable consequences of faults, i.e. symptoms.

The main difference between DES and CS diagnosabil-
ity analysis processes is that the order of appearance of the
symptoms is only taken into account in the DES approach.
In the CS approach, fault occurrence assumes immediate and
simultaneous observation of the symptoms, while the DES
approach diagnosis relies on the observation of a sequence of
symptoms after fault occurrence. Proof is given that, assum-
ing the system observed a sufficiently long time, diagnosabil-
ity conditions for DES and CS are conceptually equivalent.

2.1 The models

DES model
A DES is modelled by a languageLsys ⊆ E∗ whereE is the
set of system events.Lsys is prefix-closed, and can be de-
scribed by a regular expression, or generated by a finite state
automatonG = (Q, E, T, q0) whereQ is the set of states,
E the set of events,T ⊆ (Q × E × Q) the transition rela-
tion andq0 the initial state. Each trajectory in the automaton
corresponds to one word of the language, and represents a
sequence of events that may occur in the system. The set
of eventsE is partitioned into observable and unobservable
events : E = Eo ∪ Euo, and a set of faultsEf ⊆ Euo

is given. The diagnosis process aims at detecting and as-
sessing the occurrence of unobservable fault events from a
sequence of observed events. The setOBS is defined as
the set of all the possible observable events sequences, i.e,
OBS = {(e1e2 . . . en)} wheren is any positive integer.



In this article, it is assumed that the automaton is determin-
istic (T : Q → E×Q is a function), generates a live language
(every state has at least one outgoing transition), and contains
no cycle of unobservable events.

The diagnosis process makes use of a projection operation
that removes all unobservable events from a trajectory. The
inverse operation is applied to a set of observable events se-
quences and leads to the diagnoses. A fault is diagnosable
when its occurrence is always followed by a bounded observ-
able event sequence that cannot be generated in its absence
(see definition 1).

CS model
The behavior model of a CSΣ = (R, V ) is generally de-
scribed by a set ofn relationsR, which relate a set ofm
variablesV . In a component-oriented model, these relations
are associated to the system physical components, including
the sensors. The setR is partitioned into behavioral relations
which correspond to the internal components and observation
relations which correspond to the sensors. The set of vari-
ablesV is also partitioned into the set of observed variables
O, whose corresponding value tuples are calledobservations,
and the set of unobserved variables notedX .

Observation values, possibly processed into fault indica-
tors, provide a means to characterize the system at a given
time. In a pure consistency-based approach, in which only
the normal behavior of the system is modelled, the designer
may use the model to establish a set of Analytical Redundant
Relations, which can be expressed as a set of residuals. In that
case, the observations result in a boolean fault indicator tuple.
In the following, we will refer without loss of generality tothe
observation tuples and define the setOBS as the set of all the
possible observation tuples, i.e.,OBS = {(o1, o2, ..., ok)}
wherek is the number of sensors. The observation value
pattern is referred to as theobserved signature whereas the
expected value patterns for a given fault, obtained from the
behavioral model, provide thefault signature. Note that sev-
eral value patterns may correspond to the same fault, for ex-
ample when the system undergoes several operating modes.
The fault signature is hence defined as the set of all possible
observable variable value tuples under the fault. The diagno-
sis process relies on comparing the observed signature with
fault signatures. Fault signatures also allow one to test fault
detectability.

2.2 The set of observables
In the case of DES, observations consist in a sequence of ob-
servable events, while in the case of CS, observations consist
in a set of values for observable variables, with no ordering.

This paper focuses on comparing the notions based on ob-
servations that lead to diagnosability, making abstraction of
the nature of the observations. It is shown that the concept
of signatures can be defined in a way allowing to prove the
equivalence of definitions. However, it does not imply that
any system being diagnosable when modelled as a DES is di-
agnosable as a CS, due to the difference in the observations
nature. The set of observablesOBS is defined as the set con-
taining all the observations that are possible for the system. It
may represent the observations obtained from a DES (a set of

ordered observable events) as well as those from a CS (a set
of observable values).

3 Faults, diagnoses and fault signatures
This section contains formal definitions of faults, diagnoses,
and fault signatures. The definitions of diagnosability rely on
these (see next section).

3.1 Faults and diagnoses
The set of faultsFsys associated to a system is partitioned
into n types of faults, the partition is notedF . The following
properties hold :

- ∀Fi, Fj ∈ F, Fi ∩ Fj 6= ∅ ⇒ i = j
-

⋃n

i=0
Fi = Fsys

The occurrence of one or several faults of one type is called a
single fault. When faults of several types have occurred, the
system is said to be under a multiple fault. The set of possible
faults that may occur in a system is the power set ofF , noted
P(F ). For example,∅ describes the absence of faults,{Fi} a
single fault, and{Fi, Fj} a multiple fault. All three examples
are elements ofP(F ). Faults are assumed to be permanent.

A diagnosis consists in a set of fault candidates. When a
diagnosis contains only one fault, it is said to be determinate,
while if it contains several faults it is indeterminate. Theset
of all possible diagnoses is the power set of the set of faults,
notedP(P(F )). For example,{∅},

{

{Fi}
}

and
{

{Fi, Fj}
}

are determinate diagnoses, while
{

∅, {Fi}, {Fj , Fk}
}

is an
indeterminate diagnosis indicating that one of the three diag-
nosis candidates∅, {Fi} and{Fj , Fk} have occurred.

3.2 Fault signatures
Establishing fault signatures is the main part of our diagnos-
ability analysis process. This concept is commonly used in
the CS approach, but less in DES. The CSs’ notion of fault
signature is generalized and extended to DESs, allowing one
to write diagnosability criterions in a unified way.

In a general way, one can consider a fault signature as a
function Sig associating a set of observables to each fault.
Sig : P(F ) → P(OBS)

Continuous systems
The fault signature is a classical concept in the CS approach
usually defined as follows. For a faultf of P(F ), let OBSf

be the set of all possible tuples consisting of observed variable
values under the faultf , regardless of time1. Then :

Sig(f) = OBSf ∈ P(OBS)

Discrete event systems
Fault signatures are based upon the projection over observ-
able events, which are defined in a first step. They correspond
to what is usually known as observable trajectories in the DES
community.

Language projection The language projection over the set
of observable eventsEo, notedPobs, to a languageL, as-
sociates the language formed by the words ofL restricted

1Note that “under the faultf ” means that exactly all the faults in
f occured, and no faults out off occured.



to the letters that are elements ofEo. For example if
L = {e1, e1e3, e1e2, e2e3, e1e2e3} andEo = {e1, e2}, then
Pobs(L) = {e1, e1e2, e2}. The inverse projectionP−1

obs , de-
fined onP(OBS), to a set of observable events sequences,
associates the set of trajectories (which is a language) whose
projections belong to the antecedent set :

∀O ∈ P(OBS),
P−1

obs(O) =
{

s ∈ Lsys, Pobs({s}) ∩ O 6= ∅
}

Fault language For each faultf ∈ P(F ), thef -language,
or Lf , describes all possible trajectories in whichf occurs.
Lf is defined as the subset of the system’s automaton’s lan-
guageLsys , restricted to the words containing at least one
occurrence of every single fault event composingf , and no
occurrence of any other fault event.Lf describes all possible
scenarios in whichf occurs. The words of thef -language
are calledf -trajectories.

Fault signature Because of our particular interest for di-
agnosability, among the set off -trajectories, we pay special
attention to those that can be obtained when the observation
temporal window can be arbitrarily extended. This is done by
considering, inLf , only words that end in an infinite cycle.
They are defined as themaximal words, and form themaxi-
mal f -language Lmax

f of the fault. Formally, a trajectorys of
Lf belongs toLmax

f if and only if ∃t, u ∈ E∗, s = tu∞. No-
tationu∞ refers to the word built as an infinite concatenation
of wordu, i.e., everyun ∈ u∗ is a prefix ofu∞.

For each faultf ∈ P(F ), the projection of the maximal
f -languageLmax

f over the set of observable events is called
thef -signature. Any f -signature is a subset ofOBS as it is
solely composed of observable events. With the above defini-
tions, it is possible to define the signature functionSig as the
function associating itsf -signature to any faultf ∈ P(F ) :

∀f ∈ P(F ) , Sig(f) = f -signature∈ P(OBS)

4 Diagnosability
Formal definitions of diagnosability according to the DES
and CS approaches are now given.

4.1 Discrete Event Systems
We rely here on the (strong)2diagnosability definition as de-
fined by[Sampathet al., 1995].

DES (strong) Diagnosability : a DES is (strongly) diagnos-
able if and only if3 :

∀Fi ∈ F, ∃ni ∈ N, ∀s ∈ Lsys/(Fi ∈ s),
∀t ∈ E∗/(st ∈ Lsys),

‖t‖ ≥ ni ⇒ ∀u ∈ P−1

obs

(

Pobs(st)
)

, Fi ∈ u
(1)

One can notice that the definitions are stated with respect to
elements ofF . The system is required to be diagnosable for
each fault type, independently of the fact that they are single
or multiple faults.

2A definition for weak diagnosability is given in[Rozé and
Cordier, 2002] for DES and in[Travé-Massuyèset al., 2004] for
CS

3The notationFi ∈ s means thats contains at least one fault
event ofFi.

4.2 Continuous systems
In the CS approach, the classical definition of diagnosabil-
ity is already given in terms of the fault signature concept as
follows [Travé-Massuyèset al., 2004].

CS (Strong) Diagnosability : a CS is (strongly) diagnosable
if and only if :

∀f1, f2 ∈ P(F ), f1 6= f2, Sig(f1) ∩ Sig(f2) = ∅ (2)

This definition applies to single or multiple faults and dif-
fers from the DES definitions in this respect. It is shown in
the next section that this difference is not relevant and that the
fault signature concept is a unifying concept allowing one to
formally compare the two approaches.

5 Formal Comparison
In this section, we give the proof of equivalence between the
diagnosability definition in the DES and CS approaches. We
first prove that the DES definition can be extended to multi-
ple faults, which provides a better insight into the definition
interpretation.

As noted before, definition (1) is stated for elements ofF ,
which corresponds to consider single faults. Let us extend it
to multiple faults. The occurrence of a multiple faultf in a
trajectorys is noted∀Fi ∈ f, Fi ∈ s. The diagnosability con-
dition (1) is verified for eachFi ∈ f with possibly different
ni values. Taking the largest value of all theseni values as
nf , it can be easily shown that definition (1) is equivalent to
definition (1′), which accounts explicitely for multiple faults
f = {Fi}.

∀f ∈ P(F ), ∃nf ∈ N,
∀s ∈ Lsys/

(

∀Fi ∈ f, Fi ∈ s
)

,
∀t ∈ E∗/(st ∈ Lsys), ‖t‖ ≥ nf ⇒

∀u ∈ P−1

obs

(

Pobs(st)
)

, ∀Fi ∈ f, Fi ∈ u �

(1′)

This result shows that the DES diagnosability definition can
be given in terms of faults (instead of fault types), whether
single or multiple, like the CS diagnosability definition.

The equivalence between diagnosibility definitions is now
proved by considering the assessment upon absence of faults
in a diagnosable discrete events system.

Let us consider a diagnosable system, thus verifying (1),
and trajectories of arbitrary length, in particular maximal tra-
jectories which correspond to maximal words as defined in
section 3.2. Let us consider such a maximal trajectorys be-
longing to thef -languageLf . It means thats contains at
least one occurrence of every single fault event composingf
andno occurrence of any other fault. s belongs thus toLmax

f

and its projection over the set of observable events belongsto
thef -signature. Now suppose that there exists a (maximal)
trajectoryu such thatPobs({u}) equalsPobs({s}) and that
u contains at least one occurrence of a faultFj which does
not belong tof . By (1), it implies that all trajectories sharing
the observable projection ofu containFj , which is contra-
dictory with our hypothesis abouts. Thus, there does not
exist any trajectory having the same observable projectionas
s and containing a fault not belonging tof . This proves that
∀f1, f2 ∈ P(F ), f1 6= f2, Sig(f1) ∩ Sig(f2) = ∅ which is
exactly the definition (2) given in 4.2 for the Continous Sys-
tems. �



6 Operational comparison
This section contains an example that illustrates the concepts
introduced before and compare the DES and CS approaches
in an operational way. Bridges between state variables in the
CS view and events in the DES view are provided and diag-
nosability analysis is performed along the state-based diag-
nosis and the dynamic diagnosis approaches.

6.1 Example

Tank 1

Tank 2

y1

y2

c1

c2

Pump

delayτ1 delayτ2

Figure 1: A water flow system

The system represented in Figure 1 is inspired of[Puiget
al., 2005]. It is composed of two water tanks with heightsy1

andy2, and a pump connected by a water flow channel. Both
tanks supply consumersc1 andc2. The delaysτ1, respectively
τ2, correspond to the time needed for the water to reach tank2
from tank1, and tank1 from the pump. It has two operating
modes :pump on andpump off. We consider faults in sensors
y1, y2, c1 andc2, named respectivelyFy1, Fy2, Fc1 andFc2.

The example is limited to single faults and it is assumed
that the system does not switch its operating mode between
the occurrence of a fault and the apparition of its symptoms,
in order to simplify the models of the system.

6.2 Continuous model, state-based diagnosis
The discretized and linearized non-linear dynamic equations
are :

y1(t + ∆t) = y1(t) − k1c1(t) + k2upump(t − τ2)
−k3uout(t)

uout(t) = k
√

y1(t)
∼= k4y1(t)

upump = k[a(h − y2)
2 + b(h − y2) + c]

∼= k5 + k6y2(t)

y2(t + ∆t) = y2(t) − k7c2(t) + k8uout(t − τ1)
−k9upump(t)

Where∆t is the sampling time.upump being the flow
through the pump, we can state that when the pump is off,
we haveupump(t) = 0, which can be achieved by choosing
k5 = k6 = 0.

From these equations, it is possible to predict the values for
y1 andy2 with :

ŷ1(t + ∆t) = (1 − k3k4)y1(t) − k1c1(t)
+k2k6y2(t − τ2) + k2k5

ŷ2(t + ∆t) = (1 − k9k6)y2(t) − k7c2(t)
+k8k4y1(t − τ1) − k9k5

From the equations above, two consistency tests can be ob-
tained in the form of analytical redundancy relations :

r1(t + ∆t) = y1(t + ∆t) − ŷ1(t + ∆t)
= y1(t + ∆t) −

[

(1 − k3k4)y1(t)
−k1c1(t) + k2k6y2(t − τ2) + k2k5

]

r2(t + ∆t) = y2(t + ∆t) − ŷ2(t + ∆t)
= y2(t + ∆t) −

[

(1 − k9k6)y2(t)
−k7c2(t) + k8k4y1(t − τ1) − k9k5

]

Using these analytical redundancy relations and consider-
ing thatk5 andk6 are null when the pump is off, we deduce
the fault signature matrices shown in figure 2.

The fault signature matrices indicate that the system is not
diagnosable since, for example, the observable(pon, s1 =
1, s2 = 1) belongs to two fault signatures.

Fy1 Fy2 Fc1 Fc2

r1 1 1 1 0
r2 1 1 0 1

Fy1 Fy2 Fc1 Fc2

r1 1 0 1 0
r2 1 1 0 1

Pump on mode Pump off mode

Figure 2: Fault signature matrices for the system

6.3 Discrete event model, dynamic diagnosis
For the DES model of the system, the following events are
used : pon,poff , fired when the pump is turned on or off ;
FS fired when a fault occurs on sensorS ; r1, r2 fired when
analytical redundancy relationsr1 andr2, are violated.

The automaton is shown in Figure 3. An arc labelleda.b
represents two arcs labelleda andb, a leading to a state in
which onlyb may occur.

a.b
⇐⇒

a b

pon poff pon poff

Fy1.r1.r2

Fy2.r2.r1

Fc1.r1

Fc2.r2

Fy1.r1.r2

Fc1.r1

Fc2.r2

Fy2.r2.pon.r1

Figure 3: Automaton describing the system



Fault Signature
∅ (pon.poff )∞

Fc1 (pon.poff)∗.r1.(pon.poff )∞

(pon.poff )∗.pon.r1.(poff .pon)∞

Fc2 (pon.poff)∗.r2.(pon.poff )∞

(pon.poff )∗.pon.r2.(poff .pon)∞

Fy1 (pon.poff)∗.r1.r2.(pon.poff )∞

(pon.poff)∗.pon.r1.r2.(poff .pon)∞

Fy2 (pon.poff)∗.r2.pon.r1.(poff .pon)∞

(pon.poff)∗.pon.r2.r1.(poff .pon)∞

Figure 4: Fault signatures (discriminant subwords are
bolded).

From the automaton and following section 3.2, it is pos-
sible to build the signatures for all the faults (see Figure 4).
Recall that all the events except faults are observable. The
fault signatures are disjoint sets, the system is hence diagnos-
able.

6.4 Results
This example shows that, although DES and CS diagnosabil-
ity definitions are formally equivalent, operational diagnos-
ability assessment critically depends on the nature of observ-
ables.

In the CS approach, diagnosability is not achieved, as fault
signatures are not disjoint.(pon, r1 = 1, r2 = 1) is a signa-
ture for bothFy1 andFy2, and(poff , r1 = 0, r2 = 1) is a
signature for bothFy2 andFc2.

In the DES model, in thepump on mode, the symptoms
r1 = 1 andr2 = 1 appear in the order (r1r2) for Fy1 and in
reverse order (r2r1) for Fy2. Taking this order into account
permits fault discrimination betweenFy1 andFy2 in dynamic
diagnosis. In addition, in thepump off mode, bothFy2 and
Fc2 are followed by ther2 symptom, but only in the case of
Fy2, a pon command will be followed by ther1 symptom.
Notice that diagnosability stands on the assumption that the
pump will be turned on some time : it is only after thepon

command that the faults can be discriminated.

7 Related work
In the context of continuous systems, diagnosability analy-
sis is stated in terms of detectability and isolability[Chen
and Patton, 1994]. [Basseville, 2001] reviews several defi-
nitions of fault detectability and isolability and distinguishes
two types of definitions, namely intrinsic definitions that do
not make any reference to a particular residual generator and
performance-based definitions. In[Staroswiecki and Comtet-
Varga, 1999], the conditions for sensor, actuator and compo-
nent fault detectability are given for algebraic dynamic sys-
tems and isolability is discussed. Diagnosability analysis for
continous systems is often focussed on finding the optimal
sensor placement as[Travé-Massuyèset al., 2001], which
uses a structural approach, or[Yan, 2004], and [Tanaka,
1989]. [Frisk et al., 2003] also follow a structural approach
and show how different levels of knowledge about the faults
may influence the fault isolability properties of the system. In
[Travé-Massuyèset al., 2004], a definition for diagnosability

in terms of fault signatures is proposed and is the one used
in this paper. In[Struss and Dressler, 2003], the state-based
approach is extended to take into account several operating
modes, for which state signatures may be different. In this sit-
uation strong diagnosablity is hardly achieved and the paper
proposes a definition to distinguish different discriminability
situations. Two faults may benot discriminable, necessarily
discriminable or possibly discriminable depending on the in-
tersection pattern of their associated observation sets. This
work is strongly related to theweak diagnosability definition
provided in[Travé-Massuyèset al., 2004] for CS and[Rozé
and Cordier, 2002] for DES. Comparing the formal defini-
tions of weak diagnosability still remains to be done.

In the DES context, the first definitions have been proposed
in [Sampathet al., 1995]. Checking diagnosability is com-
putationally complex and polynomial time algorithms have
been designed to cope with this problem[Jianget al., 2001;
Yoo and Lafortune, 2002]. In [Cimatti et al., 2003], for-
mal verification of diagnosability is based on model-checking
techniques. More recently,[Jeronet al., 2006] propose a
generalization of diagnosability properties to supervision pat-
terns (describing various patterns involving fault events).

To our knowledge, there is no existing work comparing
and/or unifying diagnosability approaches coming from the
CS and DES communities. Some diagnosis algorithms have
been proposed for hybrid systems but diagnosability condi-
tions have not been exhibited for such systems and this is one
of our goals for future work. This paper is a direct contin-
uation of the work done with the Imalaia group and devoted
to bridge the gap between the two communities[Cordieret
al., 2004] by comparing their respective approaches to model-
based diagnosis.

8 Conclusion
In this paper, we propose a formal framework to compare in
an adequate way the diagnosability definitions from the CS
and DES community. The signature concept is generalized
to trajectories and allows us to prove equivalence of the diag-
nosability definitions. The key issue is the way observations
are defined, in a static way in the CS approach and as par-
tially ordered sets (sequences) in the DES approach. On one
hand, when temporal information is necessary to discriminate
faults, the DES approach gives better results. On the other
hand, it requires to wait a certain amount of time, before get-
ting the result. In practical applications, this delay has to be
estimated and must be realistic wrt existing risks and deci-
sions to be taken. Another view is to enrich CS signatures
with temporal information[Puiget al., 2005].

Having a common diagnosability analysis approach for
both state-based and dynamic diagnosis opens interesting per-
spectives for analysing hybrid systems diagnosability. Some
results along this line can be found in[Bayoudhet al., 2006].

Future work will address the extention of the comparison
of DES and CS approaches for weak diagnosability defini-
tions (as given in[Travé-Massuyèset al., 2004] for CS and
in [Rozé and Cordier, 2002] for DES). This is an important
issue because real world systems are generally weakly but
not strongly diagnosable. Hence weak diagnosability is more



relevant than strong diagnosability from a practical pointof
view.
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